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Abstract. The irreducible p m  of the Brillouin wne (IBZ) consuucted for a non-magnetic crystal 
phase is commonly used in band-strucmre calculations. The mz changes its shape and volume 
in a ferromagnetic cryswl phase. We shall show how the IBZ c o m c t e d  for a nonmagnetic 
crystal phase c m  be utilized for a ferromagnetic crystal phase in band-structure calculations. 
Applying magnetic space group theory, we shall justify the last statement. 

1. Introduction 

In energy band calculations the so-called irreducible part of the Brillouin zone (IBZ) is used. 
To construct the IBZ in a non-magnetic crystal phase we consider k-vectors in a general 
position [1-4]. We are dealing with a classical space group G under which the Hamiltonian 
'7? is invariant. Formally this means that the commutator [G, f i ]  equals zero. We then find 
for the energy eigenvalues [ I 4 1  

E.@) = E.(k,) i = I ,  . . . , N (1.1) 

where n is the quantum number labelling eigenvalues and where the vectors t i  belong to 
the N-arm star of a k-vector in a general position [I-$]. n e  index n will be omitted from 
here on in the text. The reason for using the IBZ instead of the entire Brillouin zone (BZ) is 
expressed by the equality [1-4]: 

kEBZ hElBZ 

where IF1 is the order of the point group F ,  which determines the crystal class connected 
with space group C. The IBZ is of much smaller size than the BZ hence applying 
equation (1.2) in band calculations results in an increase of the exactness of these 
calculations. In these calculations we use a grid of points in momentum space. With 
the same number of points in the grid we achieve a higher exactness of calculations for 
the IBZ than for the Bz. Certainly, by enlarging the number of points in the grid we can 
cope with a larger momentum space, but that is either hardly possible due to computer-in- 
use limitations or causes a large increase in computer time consumption. In the standard 
computer programs for band-structure calculations, the IBZ is usually utilized. 

The question arises: Is equation (1.2) applicable to magnetic crystals, when we are 
dealing with the magnetic groups? To answer this question we shall discuss paramagnetic 
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and ferromagnetic crystal phases separately. In section 2 we shall show that for the 
paramagnetic crystal phase equation (1.2) remains valid without any change. ' b o  
approaches were proposed to maintain the notion for the IBZ for a ferromagnetic phase. 
In the first approach, introduced by Singh et al [5] on the basis of papers by Falicov and 
Ruvalds [6] and Cracknell [ 1,2] and then used among others by Brooks and Kelly [7] and 
Fritsche et al [8], equation (1.2) is maintained while altering the meaning of the factor 
(FI and of the IBZ. The factor IF1 now denotes the order of type Ill magnetic point group 
[7,8]. The IBZ is modified as compared to that for the nonmagnetic case. The modified IBZ 
(MIBZ) is larger than the non-magnetic, unmodified IBZ, so using it may lower the exactness 
of the calculations as well. For example, in the case of an iron crystal for magnetization 
parallel to the [l IO] direction we find that the volume of the MlBZ is six times larger than 
that of the IBZ [8]. The second approach was suggested without proof by Kondorskii 191 
for the case of a ferromagnetic domain of an iron crystal with the magnetization parallel to 
the [lOO) direction or the [I101 direction, and keeps the unmodified, non-magnetic IBZ for 
a ferromagnetic crystal phase with an appropriate change of formula (1.2). Kondorskii's 
approach saves us the time we had to spend on changing our programs generating the grid 
of k-vectors for the IBZ into programs generating the grid for the mz. In section 3 we shall 
present a detailed group-theoretical justification of Kondorskii's suggestion. As a basis we 
shall use two papers by Cracknell [1,2] in which the role of magnetic symmetry in energy 
band calculations was investigated. 

A clarification of the situation seems to be needed since the unmodified IBZ together 
with formula (1.2) were applied to ferromagnetic crystal phases in several papers [1C-12]. 

At the same time the arguments of magnetic group theory have been applied to the 
Green function (GF) method used in a ferromagnetic crystal phase by Hormandinger and 
Weinberger [13]. The reduction of the amount of numerical work has been achieved by use 
of the MIBZ. The MlBZ in their calculation can be replaced with the IBZ for a non-magnetic 
crystal phase according to the formula (3.15) of this paper. 

2. The IBZ of a paramagnetic crystal 

In the oneelectron theory the behaviour of an electron in a paramagnetic crystal without an 
external magnetic field is determined by the Pauli Hamiltonian. To describe a paramagnetic 
crystal symmetry we use a type ll magnetic group GM (the so-called grey group): 

G M = G + ~ C  (2.1) 

where G is a classical space group and 9 is the time-reversal operator []-I, 14, 151. 
The question is: Does the use of grey groups in the spinor space (we are dealing with 

electrons with spin) change formula (1.1). The Pauli Hamiltonian f i  is invariant under the 
operations of the group Go = C @ SU(2) and under the timereversal operator 9 [ 151, 

[Go, 61 = 0. (2.2) 

where SR is a fractional translation connected with a rotational element R, tn is an integral 
translation and the matrices U constitute the group SU(2). In the oneelectron theory the 
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operator 6 = q K ,  where u2 is the Pauli matrix and K is the complex conjugation operator 
[15]. The action of BT(g) on spinor wavefunctions is determined by 

where the arrows J. and f indicate wavefunctions for spin ‘down’ and ‘up’ respectively. 
From equations (2.1) and (2.4) we obtain the equalities: 

Considering the fact that in the paramagnetic phase the energies for spin ‘up’ and ‘down’ are 
equal, Et(k) = El(k) = E(k), and under the condition that a group G from equation (2.1) 
contains the space-inversion element, using equations (2.5). for each k-vector, we again 
obtain E(k) = E(ki), i = 1, I . . , N, i.e. equation (1.1). When the space-inversion operation 
does not belong to the group C then the order of the star of k in a general position for 
the grey group G + BG is doubled compared to that of G. The mz for the group G + BG 
decreases by a factor 2 compared to the 182 constructed for the classical space group G in 
equation (2.1). Owing to the equations (2.5) we can utilize the IBZ for the nonmagnetic 
group G also in this case. Hence the IBZ constructed for a classical space group G can 
be used for the magnetic grey group GM from equation (2.1). Consequently equation (1.2) 
holds for a paramaznetic crystal. 

3. The IBZ of a ferromagnetic crystal 

We consider a single ferromagnetic domain [1,2] with the magnetization vector M4. Its 
symmetry is described by a type 111 magnetic group Cu[B] 

GM[fiI = ?f + 6w - N )  (3.1) 

where B specifies the magnetization vector and where H is the unitary halving subgroup of 
the space group G .  The group Cb,[@] is a subgroup of the group G + BG. 

As we have stated in section 1 the definition of the mz is connected with the star of the 
wave vector k in a general position. Conforming with the definition of the magnetic little 
group [l-3.161 the star of the k-vector in a general position consists of the vectors [3,16] 

(3.7.4 

where N is the order of the star of kj for the unitary subgroup of the magnetic group in 
equation (3.1). The vectors from kl to kN are 

’k = (ki,kz,...lkN-i.kN, kN+i, ... ,kzN) 

[ki,.  . . , kn )  = Uk f k + q (3 .2)  

where U is a unitary element, and the vectors from kN+, to k 2 ~  are 

h t t , .  . . I k 2 ~ )  = ak f k + q  (3.74 

where a is an anti-unitary element of the magnetic group, and where q is an integral 
reciprocal lattice vector. The number of vectors in the star of the k-vector in a general 
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Table 1. Magnetic point groups for magnetization directions: [Ooll. [OIO]. [IOo]. Notation of 
the symmetry elements after Bradley and Cnchell  [3I, 

U n i w  elements Anti-unitary elements x0-I 
Magnetic group GvIWll 

position for a ferromagnetic phase is equal either to the order of the point group C O M W ~ ~ ~  

with the unitary subgroup H in equation (3.1) or to the order of the magnetic point group 
connected with the magnetic group G&3] in equation (3.1). 

As an example we consider the star of a k -vector in a general position for a ferromagnetic 
domain of an iron crystal with magnetization parallel to the [lo01 direction. In the notation 
of Bradley and Cracknell [3]  the magnetic point group for such a case is 4mm'm and is 
given in table 1 .  For the vector 

k = VIZ] + wz + ~ 3 g 3  0 < V I ,  ~ r .  Y < 1 (3.3) 

where gi (i = 1,2,3) are integral reciprocal lattice vectors, we obtain the following star 
vectors: 

E k = k , I k  = - k , C ~ k , C , ; k , C , : k , ~ ~ k , S , ; k , S , : k ,  
* k = (  (3.4) 8C2yk,8C2,k, 8 C ~ ~ k , 8 C ~ k , 8 a y k , 8 a ~ k , 8 a ~ ~ k , 8 ~ ~ ~ k .  

We recall that the BZ consists of as many IBZ as there are vectors in the star of a k-vector 
in a general position. For the star in equation (3.4) the MlBZ contains three 162, i.e. IEZ,. 
IBZ2, IBZ3 (see figure 1). Vectors k = (kx .  ky ,  k,) in a general position situated within those 
IBZ are confined by the following boundaries: 

0 < kz < 1/2 

112 < k, < I - k, 
0 < kx 4 1/2 

1/2 < ky < 1 - kx 

O < k , <  112 

then k, < kx < ky (3.5a) 
then k ,  < k,  < -ky + 1 

lBZ2 kz < k y  < 112 then kz < k, k ,  (3.5b) 
then kx < kZ d -ky -k 1 

{ 1 / 2 < k Z < 1 - k ,  then k , < k , < - k , + l .  

In general the MIBZ consists of m original IBZ where the number m is equal to lFl/lFMl. 
For the reasons specified in section 1 utilization of the original IBZ is preferable in numerical 

then k, < k, < k, (3.5c) 

I 
1623 kx < kz < 112 



IEZ infermmagnetic crystals in band calculations 4523 

Figure 1. The IEZ in Oh CLUS. The thick line determines the irreducible p m  of the Bnllouin 
zone for a ferromagnetic crysd  phase when rmgnetizalion is parallel lo [IQ31 (Cracknell 
[Z]). Note that lhe edges of lhe LBZI defined in equation (3.52) are delemined by the points 
r A' H G' N 2' D' P F A, the edges of OE aq defined in equation (3.56) are determined 
by the points r A' H F P D2 N2 2' A. and lhe edges of the IEZ, defined in equation (3%) 
are determined by the points r A P Dz N2 2' Az H2 G3 @. 

calculations. For the case specified in our example we may write: 

E([100l1k)  = IFMI E(Il0fJI.k) 
kEBZ kEMlEZi 

where the first equality was utilized for example by Fritsche [8]  and Kondorskii's idea [9] 
concerning the last two terms of the second equality is expressed by: 

E ( [ 1 0 0 ] ,  k2 E IBZi) = E([001], kl E IBZI) 

E([100],k3 E IBZ3) = E([OlO],kl 6 IBZi) 
(3.7) 

where the IBZ~, i = 1,2,3,  are defined by equations (3.5) (see figure 1). The directions [OOl], 
[OIO] and [I001 of magnetization are physically equivalent. To the physical equivalence 
corresponds the equivalence of the respective magnetic groups. This may be verified by 
applying Burckhardt's theorem [ 171. 

We shall show that equations (3.7) can be generalized to the form 

E(M1.k E IBG)  = E(&, k E IBZ1) a = 2 . .  . . , p (3.8) 

where each IB&, a = 2, . . . , p. is equal to the original irreducible part of the BZ for the 
non-magnetic case (see figure 1). In the above example IBZ] is defined by (3.5~) and IB& is 
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l B Q  or I B g ,  from equations (3.5b) and (3.5c), respectively. The vectors ki, i = 1.2, 3, on 
both sides of equation (3.7), belong to the stars of the two magnetic groups of the respective 
equivalent magnetizations involved. Let the number of physically equivalent directions of 
magnetization be p .  The magnetizations Me. a = 2 , .  . . , p ,  are physically equivalent to the 
magnetization M I .  Each of the le& being a part of the MlBZ can be attached to one of the 
equivalent magnetizations Me, CY = I , .  . . , p .  The actual assignment is conditioned by the 
element g in equation (3.9) below. We observe that if equivalent groups correspond to the 
magnetizations M I  and Ma, CY = 2, . . . p ,  then these magnetizations are on the same orbit 
[3]. That means that there is such an element g which transforms the vector MI into Ma, 

gMi = M m  g Z E . 1  (3.91 

where the space inversion I is excluded since the magnetic groups of ?MI are the same. 

is defined by 
The operation of an element g belonging to a magnetic group C M [ ~ ]  on a wavefunction 

g * ( M , k ) = W ( g - ' M , g k )  fo ranygEG&3] .  (3.10) 

Since the element g commutes with the Pauli Hamiltonian 2, we have 

s % € " € ' M ~ . ~ I )  = E(M,mkl)g*(Mm,ki) (3.11) 

and 

' kW(hf i ,gk i )  = E ( M i , k i ) * ( M i , g k i )  (3.12) 

Hence 

E ( M , , k i )  = E(Mi ,gk l ) .  (3.13) 

We require that the element g which according to equation (3.9) changes M I  into Ma at 
the same time changes the vector kl belonging 10 the IBZl (see figure 1) into the vector 
kq = gkl belonging to the I B q ,  with IBZl and IBZq being parts of the same MIBZ. With the 
help of the magnetic groups determined in [1,21 it can be verified that for ferromagnetic 
crystals belonging to the cubic or hexagonal crystalline systems two cases can occur: 

(a) The element g belongs to a magnetic group &[Dl except for GM[O~] or G d l ] .  
(b) The element g belongs to G + ec - ULl GM[a] and is equal to the product 2 4  

where g, and go belong to &[a] and C&'] respectively, G + OG denotes the grey 
group of the paramagnetic phase of the considered ferromagnetic domain and p denotes the 
number of equivalent directions of magnetization. 

Case (a). We begin with the observation that g cannot change kl into k ,  = gk l ,  being 
another vector of the same magnetic star, since then gM1 =Ma, contrary to equation (3.9). 
This means that the vectors kl and k ,  may both be situated within the MlBZ (see figure 1). We 
also deduce that k ,  cannot be situated in B Z I  . This follows from the fact that g E G + BG. 
Hence the vector gkl lies inside one of the remaining non-magnetic IBZ. If that IBZ belongs 
to the original MIBZ, our goal is achieved. However, the IBZ can belong to another MlBZ 
(in our example one from the remaining 15 MIBZ). If the element g moves the vector kl 
outside the original MlBZ the gkl is in the same star with some vector k ,  in the original 
M l B z  although outside the IBZI. We therefore have the equality 

E(M1,gki )  = E ( M i , k , ) .  (3.14) 
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Hence equation (3.13) is equivalent to the condition (3.8). 
Case (b). The element g is the product of two elements g,gb, each belonging to 

a different magnetic group. Since, owing to [g,, A1 = o and [gb, 21 = 0, we have 
[g&, 'HI = 0 the results (3.10)-(3.13) remain valid. Since the preceding argument for case 
(a) applies also in this case, the last conclusion from case (a) holds. 

Consequently, owing to equation (3.8) we may derive a general formula: 

(3.15) 

where IFMI is the order of the magnetic point group connected with the space group 
G M [ ~ ] .  p ( M )  is the number of equivalent directions for M I ,  and I B Z ~  is the originally 
chosen irreducible part of the B z  constructed for the non-magnetic crystal phase: the energy 
E(M,,k) is connected with a spin state quantized along the M .  axis. For that IBZl we 
usually have the standard band-structure computer programs. 

4. Conclusions 

We have presented a general proof that the irreducible part of the Brillouin zone (IBZ), 
constructed for a non-magnetic crystal phase, can be applied for a ferromagnetic crystal 
phase with an appropriate change of equation (I.Z), thus justifying Kondorskii's suggestion. 
Hence the application of the newly derived formula (3.15) does not require the construction 
of new programs generating the k-vector grid of MIBZ for each magnetization vector 
separately. Thus it may save a lot of pretiminary labour. The application of formula 
(3.15) can be useful for energy band calculations in ferromagnetic crystal phases. 

Table 2. The action of symmetry elements on high-symmetry points. In the fin1 mlumn are 
given the names of Lhe high.symmetry k-veclars whose components are given in the brackets 
situated inside of or on the border of L B Z ~  (equation (352)) or inside IBZZ (equation (3.5b)). 
In the second column %e given the relational elements of G~[o lo ] .  In Ihe lhird column are 
given the rotliond elements of G~[100]. In the fourth column are &'en the coordinates of 
the k-vectors obtlined as a result of application of operations f" columns 2 or 3 on k-vectors 
in column I .  In the fifth column are given the names of k-vectors from column 4, with the 
assignment of the respective 182 Notation of symmetry elements after Bradley and Cmknell 
[31. 

I 2 3 4 5 
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Appendix 

Keeping in mind the results from section 3 we shall show how the argument for both cases 
(a) and (b) works in a particular case of an iron crystal with magnetization parallel to the 
[IOO] direction. This case has been considered as an example throughout section 3. We 
have to justify equations (3.7). For this we need the symmetry elements g,, and gb fulfilling 
the conditions: 

g,1[0011 =[loo] 

g,-1[0101 =[loo] 

and at the same time 

where k i ,  i = 1.2. 3, are vectors in a general position situated inside IBZi, i = 1,2,3,  
respectively, defined by equations (3.5) (figure 1). If the element g. is OC, and belongs to 
Gtolo] (see table 1) and the element gb = 6'Czp9C, (which is the product of elements from 
Gllml and Glolol), then applying the recipe from section 3 we prove that equations (3.7) are 
correct from the point of view of magnetic symmetry. To reduce the labour involved in the 
above procedure of finding the appropriate symmetry elements of the type (AI)-(A4) it is 
useful to consttuct a table analogous to table 2. There we determine the symmetry elements 
of the type (A3)-(A4), however acting on the high symmetry points of the Bz. That is much 
easier than doing it for vectors in a general position from the very beginning. That allows 
us to narrow down the set of symmetry elements that are most likely to work properly for 
vector k in a general position. 
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